Working Group Theory of Competing States of Matter

Head: Prof. Dr. Markus Garst

In our working group we investigate collective phenomena in quantum materials. The interplay of different degrees of freedom of electronic nature such as spin, charge and orbital as well as those of the crystal lattice may lead to macroscopic quantum phenomena leading to extraordinary electronic, magnetic and mechanic materials properties. Our theoretical investigations aim at explaining and predicting experimental results.

More information

f - h:   Schematic illustration of excitation modes on skyrmion strings [1].
The central part represents the local oscillation manner of skyrmion at the z = 0 plane.
The upper and lower parts are the snapshot images describing how the spin excitation launched at z = 0 propagates on the skyrmion strings, along the ±z direction parallel and antiparallel to H, respectively. The cross-sectional images describing the size and position of skyrmion at selected z-planes (shown by red layers) are also indicated.



(1)   S. Seki et al., Propagation dynamics of spin excitations along skyrmion strings, Nat. Commun. 11 (2020) 256
(2)   J. Kindervater et al., Weak Crystallization of Fluctuating Skyrmion Textures in MnSi, Phys. Rev. X 9 (2019) 41059
(3)   A. Chacon et al., Observation of two independent skyrmion phases in a chiral magnetic material, Nat. Phys. 14 (2018) 936
(4)   P. Schoenherr et al., Topological domain walls in helimagnets, Nat. Phys. 14 (2018) 465
(5)   S. Zhang et al., Reciprocal space tomography of 3D skyrmion lattice order in a chiral magnet , PNAS 115 (2018) 6386
(6)   I. Paul et al., Lattice effects on nematic quantum criticality in metals, Phys. Rev. Lett. 118 (2017) 227601
(7)   A. Dussaux et al., Local dynamics of topological magnetic defects in the itinerant helimagnet FeGe, Nat. Commun. 7 (2016) 12430
(8)   T. Schwarze et al., Universal helimagnon and skyrmion excitations in metallic, semiconducting and insulating chiral magnets, Nat. Mater. 14 (2015) 478


Members (in alphabetical order)
Name Tel
Bld.-Room E-Mail
markus garstGgn9∂kit edu
sopheak sornGgn9∂kit edu

Recent Publications

Quantum criticality on a compressible lattice
Sarkar, S.; Franke, L.; Grivas, N.; Garst, M.
2023. Physical Review B, 108 (23), Art.-Nr.: 235126. doi:10.1103/PhysRevB.108.235126
Giant lattice softening at a Lifshitz transition in Sr₂RuO₄
Noad, H. M. L.; Ishida, K.; Li, Y.-S.; Gati, E.; Stangier, V.; Kikugawa, N.; Sokolov, D. A.; Nicklas, M.; Kim, B.; Mazin, I. I.; Garst, M.; Schmalian, J.; Mackenzie, A. P.; Hicks, C. W.
2023. Science, 382 (6669), 447–450. doi:10.1126/science.adf3348
Applicability and limitations of cluster perturbation theory for Hubbard models
Enenkel, N.; Garst, M.; Schmitteckert, P.
2023. The European Physical Journal Special Topics, 232, 3495–3504. doi:10.1140/epjs/s11734-023-00976-5
Instability of Magnetic Skyrmion Strings Induced by Longitudinal Spin Currents
Okumura, S.; Kravchuk, V. P.; Garst, M.
2023. Physical Review Letters, 131 (6), Art.-Nr.: 066702. doi:10.1103/PhysRevLett.131.066702
Elastocaloric determination of the phase diagram of SrRuO
Li, Y.-S.; Garst, M.; Schmalian, J.; Ghosh, S.; Kikugawa, N.; Sokolov, D. A.; Hicks, C. W.; Jerzembeck, F.; Ikeda, M. S.; Hu, Z.; Ramshaw, B. J.; Rost, A. W.; Nicklas, M.; Mackenzie, A. P.
2022. Nature, 607 (7918), 276–280. doi:10.1038/s41586-022-04820-z
Divergent thermal expansion and Grüneisen ratio in a quadrupolar Kondo metal
Wörl, A.; Garst, M.; Yamane, Y.; Bachus, S.; Onimaru, T.; Gegenwart, P.
2022. Physical Review Research, 4 (2), L022053. doi:10.1103/PhysRevResearch.4.L022053
Screw Dislocations in Chiral Magnets
Azhar, M.; Kravchuk, V. P.; Garst, M.
2022. Physical Review Letters, 128 (15), Art.Nr. 157204. doi:10.1103/PhysRevLett.128.157204
Pairing with strings attached
Gärttner, M.; Garst, M.
2022. Nature Physics, 18, 621–622. doi:10.1038/s41567-022-01592-1
Squeezing the periodicity of Néel-type magnetic modulations by enhanced Dzyaloshinskii-Moriya interaction of 4d electrons
Butykai, Á.; Geirhos, K.; Szaller, D.; Kiss, L. F.; Balogh, L.; Azhar, M.; Garst, M.; DeBeer-Schmitt, L.; Waki, T.; Tabata, Y.; Nakamura, H.; Kézsmárki, I.; Bordács, S.
2022. npj Quantum Materials, 7 (1), Art.-Nr.: 26. doi:10.1038/s41535-022-00432-y
Topological magnon band structure of emergent Landau levels in a skyrmion lattice
Weber, T.; Fobes, D. M.; Waizner, J.; Steffens, P.; Tucker, G. S.; Böhm, M.; Beddrich, L.; Franz, C.; Gabold, H.; Bewley, R.; Voneshen, D.; Skoulatos, M.; Georgii, R.; Ehlers, G.; Bauer, A.; Pfleiderer, C.; Böni, P.; Janoschek, M.; Garst, M.
2022. Science, 375 (6584), 1025–1030. doi:10.1126/science.abe4441
Detection of Topological Spin Textures via Nonlinear Magnetic Responses
Stepanova, M.; Masell, J.; Lysne, E.; Schoenherr, P.; Köhler, L.; Paulsen, M.; Qaiumzadeh, A.; Kanazawa, N.; Rosch, A.; Tokura, Y.; Brataas, A.; Garst, M.; Meier, D.
2021. Nano Letters, 22 (1), 14–21. doi:10.1021/acs.nanolett.1c02723
Hybridized magnon modes in the quenched skyrmion crystal
Takagi, R.; Garst, M.; Sahliger, J.; Back, C. H.; Tokura, Y.; Seki, S.
2021. Physical Review B, 104 (14), 144410. doi:10.1103/PhysRevB.104.144410
Microwave resonances of magnetic skyrmions in thin film multilayers
Satywali, B.; Kravchuk, V. P.; Pan, L.; Raju, M.; He, S.; Ma, F.; Petrović, A. P.; Garst, M.; Panagopoulos, C.
2021. Nature Communications, 12 (1), Art.-Nr.: 1909. doi:10.1038/s41467-021-22220-1
Nonreciprocity of spin waves in the conical helix state
Ogawa, N.; Köhler, L.; Garst, M.; Toyoda, S.; Seki, S.; Tokura, Y.
2021. Proceedings of the National Academy of Sciences of the United States of America, 118 (8), e2022927118. doi:10.1073/pnas.2022927118
Solitary wave excitations of skyrmion strings in chiral magnets
Kravchuk, V. P.; Rößler, U. K.; den Brink, J. van; Garst, M.
2020. Physical review / B, 102 (22), Art.-Nr.: 220408. doi:10.1103/PhysRevB.102.220408
Microwave Spectroscopy of the Low-Temperature Skyrmion State in CuOSeO
Aqeel, A.; Sahliger, J.; Taniguchi, T.; Mändl, S.; Mettus, D.; Berger, H.; Bauer, A.; Garst, M.; Pfleiderer, C.; Back, C. H.
2021. Physical review letters, 126 (1), Art.-Nr.: 017202. doi:10.1103/PhysRevLett.126.017202
Field-induced reorientation of helimagnetic order in CuOSeO probed by magnetic force microscopy
Milde, P.; Köhler, L.; Neuber, E.; Ritzinger, P.; Garst, M.; Bauer, A.; Pfleiderer, C.; Berger, H.; Eng, L. M.
2020. Physical review / B, 102 (2), Art.-Nr.: 024426. doi:10.1103/PhysRevB.102.024426
The 2020 skyrmionics roadmap
Back, C.; Cros, V.; Ebert, H.; Everschor-Sitte, K.; Fert, A.; Garst, M.; Ma, T.; Mankovsky, S.; Monchesky, T. L.; Mostovoy, M.; Nagaosa, N.; Parkin, S. S. P.; Pfleiderer, C.; Reyren, N.; Rosch, A.; Taguchi, Y.; Tokura, Y.; Bergmann, K. von; Zang, J.
2020. Journal of physics / D, 53 (36), Art.Nr. 363001. doi:10.1088/1361-6463/ab8418
Propagation dynamics of spin excitations along skyrmion strings
Seki, S.; Garst, M.; Waizner, J.; Takagi, R.; Khanh, N. D.; Okamura, Y.; Kondou, K.; Kagawa, F.; Otani, Y.; Tokura, Y.
2020. Nature Communications, 11 (1), 256. doi:10.1038/s41467-019-14095-0
Evolution of magnetocrystalline anisotropies in MnFeSi and MnCoSi as inferred from small-Angle neutron scattering and bulk properties
Kindervater, J.; Adams, T.; Bauer, A.; Haslbeck, F. X.; Chacon, A.; Mühlbauer, S.; Jonietz, F.; Neubauer, A.; Gasser, U.; Nagy, G.; Martin, N.; Häußler, W.; Georgii, R.; Garst, M.; Pfleiderer, C.
2020. Physical review / B, 101 (10), Article. 104406. doi:10.1103/PhysRevB.101.104406