Arbeitsgruppe Quantenoptik

Ausgewählte Veröffentlichungen


[1]

Transverse-mode coupling effects in scanning cavity microscopy

J. Benedikter, T. Moosmayer, M. Mader, T. Hümmer, D. Hunger

New J. Phys. 21 (2019) 103029

 

[2]

Polariton hyperspectral imaging of two-dimensional semiconductor crystals

C. Gebhardt, M. Förg, H. Yamaguchi, I. Bilgin, A. D. Mohite, Ch. Gies, M. Florian, M. Hartmann, Th. W. Hänsch, A. Högele, D. Hunger

Sci. Rep. 9 (2019) 13756

 

[3]

Diamond photonics platform based on silicon vacancy centers in a single-crystal diamond membrane and a fiber cavity

S. Häußler, J. Benedikter, K. Bray, B. Regan, A. Dietrich, J. Twamley, I. Aharonovich, D. Hunger, A. Kubanek

Phys. Rev. B 99 (2019) 165310

 

[4]

Cavity-control of interlayer excitons in van der Waals heterostructures

M. Förg, L. Colombier, R. K. Patel, J. Lindlau, A. D. Mohite, H. Yamaguchi, M. M. Glazov, D. Hunger, A. Högele

Nat. Commun. 10 (2019) 3697

 

[5]

Driven-dissipative non-equilibrium Bose-Einstein condensation of less than ten photons

B. T. Walker, L. C. Flatten, H. J. Hesten, F. Mintert, D. Hunger, A. P. Trichet, J. M. Smith, R. A. Nyman

Nat. Phys. 14 (2018) 1173

 

[6]

Cavity-enhanced spectroscopy of a few-ion ensemble in Eu3+:Y2O3

B. Casabone, J. Benedikter, T. Hümmer, F. Oehl, K. de Oliveira Lima, Th. W. Hänsch, A. Ferrier, Ph. Goldner, H. de Riedmatten, D. Hunger

New. J. Phys. 20 (2018) 95006

 

[7]

Robust, tunable, and high purity triggered single photon source at room temperature using a nitrogen-vacancy defect in diamond in an open microcavity

P. R. Dolan, S. Adekanye, A. P. Trichet, S. Johnson, L. C. Flatten, Y. C. Chen, L. Weng, D. Hunger, H.-C. Chang, S. Castelletto, J. M. Smith

Opt. Express 26 (2018) 7056

 

[8]

Cavity-Enhanced Single-Photon Source Based on the Silicon-Vacancy Center in Diamond

J. Benedikter, H. Kaupp, T. Hümmer, Y. Liang, A. Bommer, Ch. Becher, A. Krueger, J. M. Smith, Th. W. Hänsch, D. Hunger

Phys. Rev. Appl. 7 (2017) 24031

 

[9]

Purcell-Enhanced Single-Photon Emission from Nitrogen-Vacancy Centers Coupled to a Tunable Microcavity

H. Kaupp, T. Hümmer, M. Mader, B. Schlederer, J. Benedikter, P. Haeusser, H.-Ch. Chang, H. Fedder, Th. W. Hänsch, D. Hunger

Phys. Rev. Appl. 6 (2016) 54010

 

[10]

Cavity-enhanced Raman microscopy of individual carbon nanotubes

T. Hümmer, J. Noe, M. S. Hofmann, Th. W. Hänsch, A. Högele, D. Hunger

Nat. Commun. 7 (2016) 1215

 

[11]

A scanning cavity microscope

M. Mader, J. Reichel, T. W. Hänsch, D. Hunger

Nat. Commun. 6 (2015) 7249

 

[12]

All-optical sensing of a single-molecule electron spin

A. O. Sushkov, N. Chisholm, I. Lovchinsky, M. Kubo, P. K. Lo, S. D. Bennett, D. Hunger, A. Akimov, R. L. Walsworth, H. Park, M. D. Lukin

Nano Lett. 14 (2014) 6443

 

Neueste Veröffentlichungen


Microwave Control of the Tin-Vacancy Spin Qubit in Diamond with a Superconducting Waveguide
Karapatzakis, I.; Resch, J.; Schrodin, M.; Fuchs, P.; Kieschnick, M.; Heupel, J.; Kussi, L.; Sürgers, C.; Popov, C.; Meijer, J.; Becher, C.; Wernsdorfer, W.; Hunger, D.
2024. Physical Review X, 14 (3), Art.-Nr.: 031036. doi:10.1103/PhysRevX.14.031036
Detection of single ions in a nanoparticle coupled to a fiber cavity
Deshmukh, C.; Beattie, E.; Casabone, B.; Grandi, S.; Serrano, D.; Ferrier, A.; Goldner, P.; Hunger, D.; Riedmatten, H. de
2023. Optica, 10 (10), 1339–1344. doi:10.1364/OPTICA.491692
Observation of Narrow Optical Homogeneous Linewidth and Long Nuclear Spin Lifetimes in a Prototypical [Eu(trensal)] Complex
Kuppusamy, S. K.; Vasilenko, E.; Li, W.; Hessenauer, J.; Ioannou, C.; Fuhr, O.; Hunger, D.; Ruben, M.
2023. The Journal of Physical Chemistry C, 127 (22), 10670–10679. doi:10.1021/acs.jpcc.3c02903
Scanning Cavity Microscopy of a Single-Crystal Diamond Membrane
Körber, J.; Pallmann, M.; Heupel, J.; Stöhr, R.; Vasilenko, E.; Hümmer, T.; Kohler, L.; Popov, C.; Hunger, D.
2023. Physical Review Applied, 19 (6), 064057. doi:10.1103/PhysRevApplied.19.064057
Laser written mirror profiles for open-access fiber Fabry-Perot microcavities
Hessenauer, J.; Weber, K.; Benedikter, J.; Gissibl, T.; Höfer, J.; Giessen, H.; Hunger, D.
2023. Optics Express, 31 (11), 17380–17388. doi:10.1364/OE.481685
A highly stable and fully tunable open microcavity platform at cryogenic temperatures
Pallmann, M.; Eichhorn, T.; Benedikter, J.; Casabone, B.; Hümmer, T.; Hunger, D.
2023. APL Photonics, 8 (4), Artkl.Nr.: 046107. doi:10.1063/5.0139003
Ultra-Sensitive Extinction Measurements of Optically Active Defects in Monolayer MoS 2
Sigger, F.; Amersdorffer, I.; Hötger, A.; Nutz, M.; Kiemle, J.; Taniguchi, T.; Watanabe, K.; Förg, M.; Noe, J.; Finley, J. J.; Högele, A.; Holleitner, A. W.; Hümmer, T.; Hunger, D.; Kastl, C.
2022. The Journal of Physical Chemistry Letters, 13, 10291–10296. doi:10.1021/acs.jpclett.2c02386
Fabrication of High‐Quality Thin Single‐Crystal Diamond Membranes with Low Surface Roughness
Heupel, J.; Pallmann, M.; Körber, J.; Hunger, D.; Reithmaier, J. P.; Popov, C.
2023. physica status solidi (a), 220 (4), Art.-Nr.: 2200465. doi:10.1002/pssa.202200465
Ultra-narrow optical linewidths in rare-earth molecular crystals
Serrano, D.; Kuppusamy, S. K.; Heinrich, B.; Fuhr, O.; Hunger, D.; Ruben, M.; Goldner, P.
2022. Nature, 603 (7900), 241–246. doi:10.1038/s41586-021-04316-2
Quantitative Determination of the Complex Polarizability of Individual Nanoparticles by Scanning Cavity Microscopy
Mader, M.; Benedikter, J.; Husel, L.; Hänsch, T. W.; Hunger, D.
2022. ACS photonics, 9 (2), 466–473. doi:10.1021/acsphotonics.1c01131
Tracking Brownian motion in three dimensions and characterization of individual nanoparticles using a fiber-based high-finesse microcavity
Kohler, L.; Mader, M.; Kern, C.; Wegener, M.; Hunger, D.
2021. Nature Communications, 12 (1), Article no: 6385. doi:10.1038/s41467-021-26719-5
Open-Cavity in Closed-Cycle Cryostat as a Quantum Optics Platform
Vadia, S.; Scherzer, J.; Thierschmann, H.; Schäfermeier, C.; Dal Savio, C.; Taniguchi, T.; Watanabe, K.; Hunger, D.; Karraï, K.; Högele, A.
2021. PRX quantum, 2 (4), Art.-Nr.: 040318. doi:10.1103/PRXQuantum.2.040318
Dynamical Backaction in an Ultrahigh-Finesse Fiber-Based Microcavity
Rochau, F.; Sánchez Arribas, I.; Brieussel, A.; Stapfner, S.; Hunger, D.; Weig, E. M.
2021. Physical review applied, 16 (1), Art.-Nr.: 014013. doi:10.1103/PhysRevApplied.16.014013
Tunable Fiber‐Cavity Enhanced Photon Emission from Defect Centers in hBN
Häußler, S.; Bayer, G.; Waltrich, R.; Mendelson, N.; Li, C.; Hunger, D.; Aharonovich, I.; Kubanek, A.
2021. Advanced optical materials, 9 (17), Art.Nr. 2002218. doi:10.1002/adom.202002218
Dynamic control of Purcell enhanced emission of erbium ions in nanoparticles
Casabone, B.; Deshmukh, C.; Liu, S.; Serrano, D.; Ferrier, A.; Hümmer, T.; Goldner, P.; Hunger, D.; Riedmatten, H. de
2021. Nature Communications, 12 (1), Art. Nr.: 3570. doi:10.1038/s41467-021-23632-9
Fabrication and Characterization of Single-Crystal Diamond Membranes for Quantum Photonics with Tunable Microcavities
Heupel, J.; Pallmann, M.; Körber, J.; Merz, R.; Kopnarski, M.; Stöhr, R.; Reithmaier, J. P.; Hunger, D.; Popov, C.
2020. Micromachines, 11 (12), Art.-Nr.: 1080. doi:10.3390/mi11121080
Cryogenic platform for coupling color centers in diamond membranes to a fiber-based microcavity
Salz, M.; Herrmann, Y.; Nadarajah, A.; Stahl, A.; Hettrich, M.; Stacey, A.; Prawer, S.; Hunger, D.; Schmidt-Kaler, F.
2020. Applied physics / B, 126 (8), Art. Nr.: 131. doi:10.1007/s00340-020-07478-5