Wir suchen qualifizierte Kandidaten mit Bachelor-, Master- oder Promotions-Abschluss für die Durchführung unseres Forschungsprogramms.

Einige spezifische Forschungsprojekte sind unten aufgeführt. Für Anfragen zu den aktuellen Stellenangeboten am IQMT wenden Sie sich bitte an Prof. Matthieu Le Tacon.

Doktorandenstellen, Bachelor- und Master-Arbeiten

"Elastic Tuning and Response of Electronic Quantum Phases of Matter"


NewsFigs/Elasto-Q-Mat.png

Es sind ab sofort mehrere Doktorandenstellen zur Mitarbeit im neuen Sonderforschungsbereich Transregio Elastic tuning and response of electronic quantum phases of matter zu vergeben. Die Aufgaben reichen von der Herstellung von Materialien über deren Charakterisierung, Thermodynamik, spektroskopische Messungen bis hin zur theoretischen Modellierung. Die Stellen am KIT werden am Institut für QuantenMaterialien und Technologien (IQMT) angesiedelt sein.
Wenn Sie Interesse an der Arbeit mit Quantenmaterialien haben und die Masterarbeit abgeschlossen haben oder bald abschlie

 

Post-doc-Stelle

"Elementare Anregungen in stark korrelierten Materialien unter extremen Bedingungen"

in der Arbeitsgruppe Inelastische Photonenstreuung


Sie arbeiten experimentell mit bei der inelastischen Photonenstreuung zur Untersuchung elementarer Anregungen in stark korrelierten Materialien unter extremen Bedingungen. Diese Arbeiten werden in enger Kooperation mit der Einkristallzucht- und/oder der D

 

Post-doc-Stelle

"Superconducting Quantum Electronics"

in der Arbeitsgruppe Kinetische-Induktivitäts-Quantensysteme


We invite motivated postdoctoral candidates with a PhD in physics to apply for a fellowship in our group. We are especially looking for candidates with experience in one of the following fields: microfabrication, low temperature condensed matter, or high-frequency electronics.

Several projects in the field of superconducting quantum electronics are available, depending on the candidate

 

Doktorarbeit

"Ladungsdynamik von 2D-Quantenmaterialien"

in der Arbeitsgruppe Inelastische Photonenstreuung


Sie entwickeln eine Probenumgebung und eine Methode zur Untersuchung der Ladungsdynamik von 2D-Quantenmaterialien mit exotischen elektronischen Eigenschaften mittels inelastischer Photonenstreuung.

Weitere Informationen

Ansprechpartner: Prof. Matthieu Le Tacon.

 

Doktorarbeit

"Josephson Junction Networks"

in der Arbeitsgruppe Kinetische-Induktivitäts-Quantensysteme


AG-Figs/AG26/pop-josephson_junction_50.jpg

Thesis project in the context of implementations of quantum information processing with superconducting circuits.

We are looking for a motivated PhD candidate to design, implement, and operate quantum superconducting circuits. This project will focus on the study of networks of Jospehson junctions with custom tailored energy spectra.

During their training, PhD candidates will gain practical experience in microelectronics design, microfabrication, low temperature (mK) measurements, and high-frequency electronics.

Our laboratory benefits from a fully functional nanofabrication facility, including an electron beam pattern generator, optical lithography, metal deposition machines and imaging tools.

Contact: Dr. Ioan Pop

 

Doktorarbeit

"High Kinetic Inductance Media"

in der Arbeitsgruppe Kinetische-Induktivitäts-Quantensysteme


Thesis project in the context of implementations of quantum information processing with superconducting circuits.

We are looking for a motivated PhD candidate.

During their training, PhD candidates will gain practical experience in microelectronics design, microfabrication, low temperature (mK) measurements, and high-frequency electronics.

Our laboratory benefits from a fully functional nanofabrication facility, including an electron beam pattern generator, optical lithography, metal deposition machines and imaging tools.

Contact: Dr. Ioan Pop

 

Masterarbeit

"Multiferroische Eigenschaften von Orthoferrit / Manganat-"

in der Arbeitsgruppe Dünne Schichten und Grenzflächen


AG-Figs/AG03_Lu-Oxide-SL.png

Multiferroische Materialien werden von zwei oder mehr Ordnungsparametern gleichzeitig gesteuert, die sich gegenseitig beeinflussen. Ein Lehrbuchbeispiel ist die Multiferroizität in orthorhombischen Seltene-Erden-Manganaten und -Ferriten, R(Mn,Fe,)O3 (R = Gd -Lu). Diese gehöhren zur Klasse der magneto-elektrischen Multiferroika, in denen die magnetische Ordnung die Inversionssymmetrie des Kristalls bricht und zu einer ferroelektrischen polaren Ordnung führt. Dünne Filme aus diesen Materialien sind von besonderem Interesse, da sich die multiferroischen Eigenschaften hier durch epitaktische Verspannung, in Heterostrukturen oder Übergittern aus diesen Materialien abstimmen lassen, was neue Möglichkeiten f

 

Masterarbeit

"Induzierte Supraleitung in Graphen"

in der Arbeitsgruppe Bauelementphysik


AG-Figs/AG13/MT_Graphene.png

By placing graphene between hexagonal boron nitride, one can produce high quality devices called van der Waals heterostructures [1], in which charge carrier transport is ballistic. When graphene is connected to superconducting leads, a dissipationless current (called supercurrent) can flow through the device [2-4]. In this project, we study the limit of this induced superconductivity in ballistic graphene, that is to say the maximum distance over which the supercurrent can be measured. The effect will be probed by quantum transport and magnetic interferometry experiments.

What you will learn

You will develop new electronic devices using graphene as a base material and investigate their fundamental physical properties. You will learn the use of the equipment and facilities of the Institute for Nanotechnology (electron beam lithography, ultra-high vacuum deposition systems, low-noise electrical measurement at cryogenic temperatures, Raman spectroscopy, etc.) and will benefit from a strong theoretical support. Our work is supported by the DFG.
[1] Geim et al., Nature 499,419 (2013)
[2] Heersche et al, Nature 446, 56 (2007)
[3] Allen et al., Nature Phys. 12, 128 (2016)
[4] Ben Shalom et al., Nature Phys. 12, 318 (2016)

Contact: Dr. Romain Danneau

 

Masterarbeit

"Precision Spectroscopy of Rare Earth Ions"

in der Arbeitsgruppe Quantenoptik


AG-Figs/AG14/AG14_PhD_cavity-enhanced_readout.jpg

We are inviting applications for a PhD position.

The project focuses on realizing an efficient optical interface for individual rare earth ions in solids with open-access optical microcavities. Rare earth ions provide exceptional optical and hyperfine coherence, which makes them promising candidates for quantum optical applications, ranging from quantum memories to quantum-nonlinear optics. We want to gain efficient access to individual ions and small ensembles by coupling them to a high finesse optical microcavity and enhancing their emission.

The goal of the master thesis is to establish a laser system for precision spectroscopy. It involves the setup of an ultra-stable reference cavity and implementation of laser frequency stabilization. The system will then be used for cavity-enhanced spectroscopy of single ions and ion ensembles.

We seek for a creative and motivated individual to advance this research project.

Applications should include

  • a curriculum vitae
  • academic records (Bachelor, Master transcript of records)
For further inquiries and applications please contact Prof. David Hunger.

 

Masterarbeit

"Cascaded Enhancement of Light-Matter Interactions with Nanoantennas Coupled to a Tunable Microcavity"

in der Arbeitsgruppe Quantenoptik


AG-Figs/AG14/AG14__nanoantenna.jpg

We are offering a position for a Master Thesis.

We are performing experiments on cavity enhancement of the fluorescence of individual solid state emitters and on cavity-enhanced microscopy and spectroscopy. Our vision is to realize efficient quantum interfaces between light and matter. Such interfaces call for ultimative spatio-temporal confinement of light, i.e. the combination of a large quality factor and a microscopic cavity mode volume. Using optical fibers with laser-machined endfacets as mirror substrates, we have realized microscopic cavities with wavelength-scale mode volumes and exceptionally high quality factors.

The combination of such cavities with metallic nano-antennas offers additional enhancement potential. The first goal of this thesis is to investigate the coupling of nanofabricated Bowtie antennas to a tunable microcavity. In a second step, enhanced light matter interactions with ensembles of emitters coupled to the cascaded photonic system will be explored.

We seek for a creative and motivated individual to advance this research project.

Applications should include

  • a curriculum vitae
  • academic records (Bachelor, Master transcript of records)
For further inquiries and applications please contact Prof. David Hunger.

 

Masterarbeit

"Design and Fabrication of Superconducting Circuits"

in der Arbeitsgruppe Kinetische-Induktivitäts-Quantensysteme


AG-Figs/AG26/AG26_pop-sc_circuits_50.jpg

Master thesis project in the context of implementations of quantum information processing with superconducting circuits.

We invite interested students to apply for a Master thesis in our group. During their thesis, they will get an introduction to the field of superconducting electronics and gain practical experience in microelectronics design and micro-fabrication in a cleanroom (e-beam and optical lithography).

Our laboratory benefits from a fully functional nanofabrication facility, including an electron beam pattern generator, optical lithography, metal deposition machines and imaging tools.

Contact: Dr. Ioan Pop

 

Masterarbeit

"Electromagnetic Modeling of High Frequency Superconducting Circuits"

in der Arbeitsgruppe Kinetische-Induktivitäts-Quantensysteme


AG-Figs/AG26/AG26_pop-sc_em-modlg_hf_circuits_50.png

Master thesis project in the context of implementations of quantum information processing with superconducting circuits.

We invite students interested in the field of high frequency (GHz) quantum electronics to apply for a Master thesis in our group. During the thesis they will get an introduction to the field of superconducting electronics, and gain practical experience in microelectronics design and high frequency electromagnetic simulations.

Contact: Dr. Ioan Pop